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[1] This study describes an inverse approach for efficiently
identifying the spatial shapes of zones of low (or high)
permeability using the level set method, given a set of
spatially distributed head measurements. By this method,
the boundaries of zones are characterized by a level set
function. From an initial setting, the unknown regions of
zones are determined by evolving the boundaries in
artificial time using a pseudo velocity field that is related
to the sensitivity of head to permeability and the residual
between the measured head and modeled head at the current
time. A synthetic example presented to illustrate the
method. Citation: Lu, Z., and B. A. Robinson (2006),

Parameter identification using the level set method, Geophys.

Res. Lett., 33, L06404, doi:10.1029/2005GL025541.

1. Introduction

[2] Identifying parameter zonations is probably the most
difficult in parameter identification problems. Traditionally,
the heterogeneous domain of interest is divided into a
number of zones and the parameter value in each zone is
a constant to be determined. Although boundaries of these
zones have significant impact on predicting flow and solute
transport in the domain, in most cases we do not have
enough direct information to infer the size, shape, locations,
and the number of zones. Even in cases for which there is a
clear correlation between identifiable geologic indicators
and hydraulic conductivity, often data control is still insuf-
ficient to infer the size, shape, and location of zones. More
problematic is the situation in which hydraulic conductivity
does not correlate well with lithology. The zonation problem
is extremely ill-posed in these cases. Sun and Yeh [1985]
were the first to propose a method to identify simultaneously
both the parameter zonation and its parameter values for the
hydraulic conductivity field. Using some model structure
identification criteria, Carrera and Neuman [1986] were
able to choose the best parameter zonation pattern among
a number of given alternatives. Eppstein and Dougherty
[1996] used a modified version of the extended Kalman
filter, a data-driven procedure that dynamically determines
and refines zonations. Tsai et al. [2003] used Voronoi
zonation to parameterize the unknown distributed param-
eter and solved the inverse problem by a sequential global-
local optimization procedure.
[3] In this study, we introduce a new approach for

parameter zonation identification based on the level set
method, applying the approach to a simple case of one
material embedded in another. This method can be used to

identify, for example, low-permeability layers in a relatively
higher permeability porous media (or vice versa), or highly
permeable fault zones in the subsurface.
[4] The level set method is a very powerful tool for

solving problems that involve geometry and geometric
evolution [Osher and Sethian, 1988]. It has also been
applied to solving shape optimization problems [Burger,
2003]. By a shape we mean a bounded region D 2 Rn with a
C1 boundary. Instead of working on D directly, in the level
set method a function f(X), with D = {X, f(X) < 0}, is
manipulated to adjust D implicitly. Since D is unknown, so
too is the function f(X). In shape optimization problems we
start from an initial shape and improve it iteratively, by
updating an initial level set function f(X) iteratively. The
method has been used in several fields, including image
segmentation [Lie et al., 2005] and inverse problems
[Santosa, 1996]. One of the advantages of the level set
method is that it is much easier to work with a globally
defined function than to keep track of the boundaries of
regions of interest, which may split into many regions or
merge into larger ones.
[5] It is important to emphasize that, comparing with

geostatistical inverse methods such as indicator (co-)krig-
ing, the inverse approach based on the level set method
requires no a priori assumptions on shape, size and loca-
tions of zones to be sought or correlation structures of these
zones. This advantage should be very useful for ill-posed
problems in hydrogeology.

2. Problem Statement

[6] Consider transient water flow in saturated media
satisfying the standard governing equation

r � Ks Xð Þrh X; tð Þ½ � þ g X; tð Þ ¼ Ss@h X; tð Þ=@t; X 2 W ð1Þ

subject to appropriate initial and boundary conditions. Here
h(X, t) is the hydraulic head, Ks(X) is the saturated
hydraulic conductivity, Ss is the specific storage, and W is
the flow domain of interest. For simplicity, Ss is taken to be
constant, because its variation is relatively small compared
to that of the hydraulic conductivity.
[7] To introduce this method in the simplest way possi-

ble, we assume that the saturated hydraulic conductivity is a
spatially varying binary random variable, i.e., one material
being (disjointly) embedded in the other. Although there is
no direct information regarding the size, shape, and loca-
tions of these zones, it is assumed that the hydraulic
conductivity values for these two materials are known. This
assumption may be justified. In fact, in many sites, hydrau-
lic conductivity values for different stratigraphic units are
known or can be estimated, but the exact spatial distribution
of units are not.

GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L06404, doi:10.1029/2005GL025541, 2006

1Hydrology, Geochemistry, and Geology Group (EES-6), Los Alamos
National Laboratory, Los Alamos, New Mexico, USA.

This paper is not subject to U.S. copyright.
Published in 2006 by the American Geophysical Union.

L06404 1 of 4



[8] Now suppose head values are measured at nh
locations X1, X2, � � �, Xnh

, and at nt times t1, t2, � � �, tnt,
arranged in a vector h0 = (hi

(k)), i = 1; nh, and k = 1; nt.
The aim is to find the spatial distribution of two materials
in the domain. To demonstrate the method, the case of
error-free head measurements is examined, though it
would be straightforward to include measurement errors
in future work.

3. Level Set Representation of Zones

[9] Suppose that there is an unknown subset of W,
denoted as D, representing the regions of low- (or high-)
permeability zones. The boundary of D can be described by
a function f(X), @D = {X: f(X) = 0}. Accordingly, the
hydraulic conductivity field can be represented by a binary
function

K Xð Þ ¼
Kint; for X 2 D ¼ X : f Xð Þ < 0f g;

Kext; for X 2 DC ¼ X : f Xð Þ > 0f g;

8<
: ð2Þ

where DC = W\D is the complement of D, and Kint and Kext

are the hydraulic conductivities of interior and exterior of D,
respectively. Note that for a given D there are an infinite
number of functions that satisfy @D = {X: f(X) = 0}.
However, any function f(X) uniquely defines @D. This
feature allows us to reinitiate f(X) periodically without
affect the boundary @D.
[10] The inverse problem described above is to find f(X)

such that the hydraulic head field solved using the spatial
distribution of different zones characterized by @D = {X:
f(X) = 0} matches head measurements at the various
observation points and times. Note that no assumption has
been made on the connectedness of D, i.e., D could be a
disjoint set, or connected but including a number of holes.
In addition, there is no assumption made regarding the
number of zones, their size and locations, correlation
structure, or the proportion of two materials.
[11] Because the shape, size, and locations of set D are

unknown, function f(X) is also unknown. In the level set
approach, we generate a sequence of functions fk(X),
defining a sequence of regions Dk = {X: fk(X) < 0}, such
that Dk ! D, as illustrated in Figure 1. In this iterative
process, the number of zones and their shape, size, and
locations are sequentially improved. The success of this
method hinges on finding a strategy for efficiently propa-

gating the boundary of Dk such that it approaches D. This is
described in the following sections.

4. Formulation of the Inverse Problem

[12] The inverse problem described above can be written
as a problem of minimizing an objective function:

F Kð Þ ¼ 0:5kH Kð Þ � h0k2 ð3Þ

where h0 is a vector of head measurements, and H
represents an operator that maps the hydraulic conductivity
field K to the hydraulic head field (i.e., the model solving
the flow equation with appropriate boundary and initial
conditions) and takes head samples at observation points
and times.
[13] The directional derivative of function F(K) in the

direction dK, the variation of K, is given by

dF Kð Þ ¼ hJT Kð Þ H Kð Þ � h0½ �; dKi; ð4Þ

where J(K) is the Jacobian of the head to hydraulic
conductivity, and h�i represents the inner product:

dF Kð Þ ¼
Z
D

JT Kð Þ H Kð Þ � h0½ �dKdX: ð5Þ

In the discretized case, J is an (nh � nt) � N Jacobian
matrix, whose components are Jij = dhi/dKj, i =
1; nh � nt, j = 1;N , where N is the number of grid
nodes in the domain W.
[14] For a given variation df (or dX) that propagates D to

a new set D0, as shown in Figure 2, dK is non-zero only in
D00 = [D \ D0C] [ [D0 \ DC], which represents those points
that are either in D but not in D0 or in D0 but not in D. As a
result, the integral in (5) can be reduced to an integral over
D00. For an infinitesimal dX, D00 = @D, and (5) can be written
as

dF Kð Þ ¼
Z
@D

JT Kð Þ H Kð Þ � h0½ �dKdX: ð6Þ

Certainly, variation dK is caused by variation dX (or df),
and we need to represent dK in terms of dX or df.
Following Santosa [1996], as illustrated in Figure 2, dK
can be related to dX by dK = (Kint � Kext)n(X) �
dXjX2@D, where n(X) = rf(X)/jrf(X)j is the normal
direction of the curve at X. We can assume that each

Figure 1. Schematic diagram showing the evolution of
level set functions.

Figure 2. Schematic diagram illustrating the relationship
between dX and dK, which is non-zero only in D \ D0C or
D0 \ DC.
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point on @D moves in the normal direction of the
boundary @D, dX = a(X)n(X), where a(X) can be
viewed as the propagation speed of the boundary. Sub-
stituting expressions of dX and dK into (6),

dF Kð Þ ¼
Z
@D

JT Kð Þ H Kð Þ � h0½ � Kint � Kextð Þa Xð ÞdX ð7Þ

To ensure that dF(K) is negative, a is chosen as

a Xð Þ ¼ �sgn Kint � Kextð ÞJT Kð Þ H Kð Þ � h0½ �; ð8Þ

where sgn is the sign function, which returns the sign of
its argument. Since the boundaries are propagated at
speed a, the direct measurements of the saturated hy-
draulic conductivity can be incorporated easily by setting
the initial field to honor the measured hydraulic conduc-
tivity and then forcing the propagation speed to be zero
at these measurement locations such that the boundaries
will not across these locations.
[15] The physical meaning of (8) can be explained as

follows. With no loss of generality, consider the case in
which Kint < Kext. Suppose that at point X at a given
iteration, the modeled head values are too high compared
to the measured values (i.e., H(K) > h0), and that an
increase of hydraulic conductivity value at X will increase
the head at the observation points (i.e., J(K) > 0). In this
case, the a value at point X computed from (8) will be
positive, signifying that the boundary @D at point X
should move outward. As a result, the hydraulic conduc-
tivity value at X decreases from Kext to Kint, which will
lead to a decrease in modeled head values in the new
iteration.
[16] Note that the propagation speed a(X) combines

contributions from all observation points. If the sensitivity
values of head at observation points Xi and Xj to hydraulic
conductivity at X are the same, the point with larger head
residual will exert more influence on the propagation speed
in the next iteration. On the other hand, if the head residuals
at two observation points (or times) are the same, the point
with a higher sensitivity value will be more influential.
Finally, should the modeled head match the observed head,
the boundaries would stop evolving.
[17] The final step is to derive an equation for the

evolution of f. The variation of X can be related to that
of f by taking the variation of equation f(X) = 0, df(X) +
rf(X) � dX = 0. If the function f(X) is expressed as a
function of both X and an artificial time t, f = f(X, t), the
evolution of f(X, t) accordingly defines the evolution of
boundary @D(t) = {X:f(X, t) = 0}. For sufficiently large t,
@D = {X: f(X, t) = 0} defines the spatial distribution of
two materials and gives the solution to the inverse problem.
Substituting expressions of dX into above variational rela-
tionship and recalling the definition of n(X), an initial value
problem for f(X, t) is derived,

@f X; tð Þ=@tþ a X; tð Þjrf X; tð Þj ¼ 0;f X; 0ð Þ ¼ f0 Xð Þ; ð9Þ

which is called the level set equation. The solution of this
equation over the artificial time t gives the boundary @D(t)

and eventually the solution stabilizes, representing the
solution to the inverse problem.

5. Calculation of the Jacobian Using the
Adjoint Method

[18] The derivative of hydraulic head at each measure-
ment location with respect to hydraulic conductivity at each
grid node in the domain W can be written as

dh Xi; tð Þ=dKj ¼
Z t

0

Z
Wj

rH X; tð Þ � r @y X; tð Þ=@tjt�t

� �
dXdt;

ð10Þ

where H is the mean head Kj is the saturated hydraulic
conductivity at grid node j, Wj is the exclusive subdomain of
node j, and y is the adjoint state variable, which can be
solved from the following adjoint state equation:

r KG Xð Þry X; tð Þ½ � þ d X� xið Þ ¼ Ss@y X; tð Þ=@t; ð11Þ

with homogeneous initial and boundary conditions. Here Xi

is an observation point and d() represents the Dirac d
function. Equation (11) needs to be solved nh times by
placing an injection well of unit strength at each observation
point.

6. Illustrative Examples

[19] In this section, we illustrate the level set method with
a two-dimensional synthetic example. The test system
consists of steady-state, saturated water flow in a rectangu-
lar domain of 100 m �100 m, discretized into elements of a
size 1 m � 1 m. The true (synthetic) permeability field,
shown in Figure 3a, consists of two zones of low-perme-
ability material (k = 10�13 m2), one tall vertical bar and one
fat horizontal bar, embedded in a background material of k =
10�10 m2. The boundary conditions are prescribed as
constant head at left (H1 = 10.5 m) and right (H2 =
10.0 m) boundaries and no flow at the two lateral bound-
aries. The steady-state flow equation is solved for the
synthetic permeability field, and 36 head measurements at

Figure 3. Comparison of the true distribution of low-
permeability zones with inverse results at different stages of
computation.
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various locations are assumed to be available, shown as
points in Figure 3a. Figure 3a also shows the contour lines
and streamlines for the true flow field.
[20] We then compute the Jacobian matrix, which is the

derivative of the hydraulic head at observation points Xi

with respect to permeability at each node at the domain W,
using (10)–(11). Note that the Jacobian is a function of the
mean hydraulic head H(X, t), which in turn depends on the
mean permeability field. Ideally, the Jacobian matrix should
be updated at each iteration. Due to high computational
cost, however, it is calculated only once using the mean
head solving from a homogeneous permeability field of k =
10�10 m2.
[21] The iterative procedure is initiated by choosing an

initial level set function f0(X) = 0.1 � exp(�0.005d),
where d = (x � 50)2+ (y � 50)2 is the distance from point
X = (x, y) to the center of the domain (50 m, 50 m). This
function defines an initial guess of low-permeability zones
(a disc with radius of 21.46 m, located at the center of the
domain, see Figure 3b). The flow equation is then solved
using the initial permeability field defined by f0(X), and the
pseudo velocity field a(X) is computed based on the
difference between the modeled head and the observed
head using (8). Finally, the boundary is propagated by
solving the level set equation (9). The new boundary of
low-permeability zones is determined by the set @D =
{X: f(X) = 0}. This process is repeated until either the
prescribed number of updates has been reached or the
difference between the modeled head and the observed
head is smaller than a prescribed value. To prevent steep
or flat gradients of the level set function f, the function
is periodically reinitialized to a signed distance function,
i.e., f(X) = �d(@D, X) for X 2 D or f(X) = d(@D, X)
for X 2 W\D, where d represents the distance between
point X and boundary @D. Note that this reinitialization
will not change the boundary @D.
[22] The evolution of the boundary @D is depicted in

Figures 3c–3f, where the artificial time t represents the
number of updates. The method obtains the inversion results
that are very similar to the true field. The algorithm
proceeds to form the vertical bar first because it has a more
dominant impact on the flow field. After resolving this bar,
the algorithm then forms the fat horizontal bar. To ensure
the convergence of the algorithm, a relatively small time
step has been used, and the model run takes about 600 steps.
The number of required steps may be reduced if the length
of the time step varies dynamically. This demonstration
shows that the level set method can efficiently handle the
splitting or merging of the regions, provided the underlying
data support is adequate for developing a model with this
resolution.
[23] To investigate the sensitivity of the inverse model to

the initial setting, we conducted two more model runs, one
with the same size of inclusion in the upper-left corner of
the domain rather than in the center as in the previous
example and the other run with an initial inclusion of
diameter 10 units in the upper-right corner of the domain.
The inversion results from the first run are almost identical
to the results illustrated in Figure 3f, while the second run
does not capture any inclusions in the domain. A general

rule is that the initial setting should be chosen such that it
has a significant impact on the flow field.

7. Summary and Further Work

[24] This paper is a preliminary study proposing a new
inverse algorithm based on the level set method. In this
method, the boundary of low- (or high-) permeability zones
is represented by the zero level function. Starting from an
initial setting of zones, their boundary is sequentially
evolved to reduce the difference between the observed
hydraulic head and the modeled head. The propagation
speed of the boundary at any iteration is proportional to
the sensitivity of head to the permeability field and the
residual between the observed and modeled head at various
measurement locations and observation times. The synthetic
example presented showed that the level set method can
efficiently identify the parameter zonation.
[25] These promising initial results suggest that further

work is warranted to explore the level set method in more
detail. Future work will include extending the method to
incorporate transient head response data; using other data
sets beyond simply head data (solute concentration or travel
time measurements); consideration of measurement error
and data density into the evaluation of the method; and
developing methods for the joint inversion for shape and
permeability of the individual zones. Furthermore, for
maximum usefulness, the method should be extended to
account for an arbitrary number of stratigraphic units, each
with a distinct unknown value of permeability. Finally, one
important issue that needs to be addressed in the future is
the uncertainty associated with the prediction of internal
boundaries between different materials, which may provide
direct input to the random domain decomposition method of
Winter and Tartakovsky [2000] for better quantifying flow
and solute transport in the subsurface.
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